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It is shown that the restrictive conditions of Wood et al. [1] are not necessary 
to reach the conclusion that the Dirac hamiltonian, projected onto the space 
of the large component,  exhibits variational properties. The eigenvalue spec- 
trum of  matrix approximations to the partitioned hamiltonian (obtained by 
matrix partitioning) converges to the exact spectrum in the limit of infinite 
order (assuming completeness) but not necessarily from above as for true 
matrix representations (obtained from operator partitioning). Optimization 
of non-linear parameters is shown not to cause variational instabilities. 
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In this short note we extend the recent work of  Wood et al. [1] on the analysis 
of  solutions of  the 1-electron Dirac equation in the algebraic approximation. 
Wood et al. [1] showed that a partitioned (effective) two-component hamiltonian 
obtained by applying the partitioning technique [2] to the Dirac equation has 
several advantages, one of which is that under certain restrictive conditions [3] 
the partitioned hamiltonian has variational properties. Here we show that these 
restrictive conditions can be avoided. 

The eigenvalue spectrum of  the partitioned hamiltonian is identical to that of 
the 4-component Dirac equation and we use this fact to deduce properties of 
approximations to the bound state spectrum from its two component form. In 
particular, the convergence behaviour as the algebraic basis set is allowed to 
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become complete, which we will show is not necessarily from above as for the 
bounded SchrSdinger equation (but variational stability is guaranteed). 

The time-independent Dirac equation, with restmass-energy subtracted, is 

clI  V__2CZ]\xld, S ] = e airs 
(1) 

where l~i = o-./~ and o- are the usual Pauli spin matrices and/~ the momentum. 
We take V = - Z / r  as the external potential of an infinitely heavy structureless 
point nucleus of charge Z. 

Applying the partitioning technique of perturbation theory, or equivalently 
eliminating the small component ~s ,  gives 

AP( )'I 'L= (2) 
where 

A p  A ^ 

H (e) = cII(e - V+2c2)-1cli+ V (3) 

and can be identified as an effective (energy-dependent) hamiltonian. Introducing 
a normalized two-component square-integrable function q~, satisfying the usual 
boundary conditions for physical bound states and which, except for normaliz- 
ation, is otherwise arbitrary, allows us to define the expectation 

F (e )  = < ' ~ l H " ( e ) l ' I '  > (4) 

and its restriction to D 

D = {e[e -> -2c 2} (5) 

f ( e )  = F(e)ID. (6) 

The restriction to D concentrates attention on "positive energy" solutions of Eq. 
(2). Reference to Eq. (3) shows that f ( e )  is finite on the whole of D since 

(e - V+2c2) -1= r[(e+2c2)r+Z] -1 (7) 

The behaviour o f f ( e )  is well known [2] and has the following specific properties, 

(i) f ( e )  is finite and continuous on D 

(ii) f ( e + A ) < f ( e )  (A>0)  

(iii) lira [ f ( e )  - f ( e  + A)] = 0 
e-+~x3 

(iv) f ( e  = - 2 c 2 )  > 0  (Z<-c). 

Consequently the solution of 

e = f ( e )  

(a finite) 

(8a) 

(8b) 

(Sc) 

(8d) 

(9) 

exists and is unique. Equation (8d) distinguishes this work from that of Wood 
et al. [1] who require the restrictive assumption [3] 

!irn f ( e )  > - 2 c  2 (10) 



Dirac equation in algebraic approximation 353 

instead of Eq. (8d) to ensure the existence of a solution to Eq. (9). Note that 
F(e) = e always has at least two solutions but Eqs. (8a-d) show that one and 
only one exists on D. Equation (8d) can be demonstrated as follows 

f (e  = - 2 c  2) = (~ I ' l ( c2 /Z )~I r~I  - Z r - ' l q ' )  (11) 

= (c2/Z)(~[R+(o ". l+ 12-ZZ/c2)r-ll~) (12) 

where/~ = - 3 d /  dr - r d2/ dr 2. 

It can be shown by explicit partial integration that 

(d/dr(r*)k-l ld/dr(r~)> -- <'I'IR - r- ' l 'I ')  (13) 

under the assumption that 

lim (r3W*(d/dr)W) = 0 (14) 
r~OO 

which must be considered an additional (reasonable) constraint on ~ .  The integral 
in Eq. (13) exists whenever the potential energy integral exists (a boundary 
condition on physical bound states). 

Writing Eq. (12) as 

(c2/z)[('el - F+ 1 -zVc )r ( lS )  

shows that Eq. (8d) is always satisfied. 

To demonstrate the variational property of  I2IP(e) on D we introduce the finite 
expansion 

N 
~,  = E a~q~j (16) 

j = l  

where the {~bl} satisfy the same boundary conditions as ~ and are orthonormal. 
Optimization of the {aj} leads to the finite matrix equations 

NHP(e)ai=NEi(e)ai (I<--i<--N, NE,(e)<--NE,+A(e)). (17) 

The NEi(e) have the same functional behaviour on D as f (e )  and we therefore 
restrict 

NE,(e) := NE~(e)]D. (18) 

As N is increased, Cauchy's interlace theorem states 

N + I E 1 ( ~ "  ) ~ NEI(E ) (rE on D) (19) 

and consequently 

N+IE,(N+I E1) ~ NE,(NE1) (20) 

i.e. convergence with respect to increasing N is from above. Making the usual 
assumption that the basis {~bi} forms a complete set in the limit N-~oo leads to 
the conclusion thai: NE,(NE,) converges to an exact positive eigenvalue. It is 
worthwhile to point out that {~bi} need not satisfy the proper cusp condition to 
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obtain convergence to exact eigenvalues from above (compare SchriSdinger 
equation) and that for finite N, basis sets may be non-linearly optimized to 
minimize the lowest expectation on D (but in contrast to the Schr5dinger equation 
the linear variational stationary point must be maintained). 

Returning to the 4-component Dirac equation and introducing the expansions 

N M 

~pL= y, a,~b,, ~ s =  • bix, (21) 
i = l  i = l  

where {~bi}, {Xi} are orthonormal sets of scalar functions and {ai}, {b~} are 
understood to be 2-component vectors, leads to a matrix equation that can also 
be partitioned to develop a matrix projection 

U P ( E )  = CnLS( 6 -- VSS"~ 2C2)-l cI~sL'q - VLL. ( 2 2 )  

This is not a representation of Eq. (3) but instead a representation of 

/~aPPr~ = c~IO[ Q(e - V + 2cZ) O]-a(~c~I + V (23) 

where 

M 

0 = • IX,)(X,I. (24) 
i=1 

/~appr~ is nOW not only energy dependent but also {X~} dependent. In order 
t h a t  /'~appr~ on D maintains separation of positive and negative energy states 
two conditions must be satisfied 

(i) clI Q[ (~(e - V+ 2c 2) (~]-'(~cII is positive definite on D (25a) 
A X 

(ii) H app.~ (e = - 2 c  2) is positive definite. (25b) 

The kinetic balance principle discussed by several authors and recently analysed 
by Stanton and Havriliak (1984) guarantees Eq. (25a) but is somewhat stronger 
than necessary. The small component function is expanded as 

N 

W s = E bl(o"/36,) (N = M) (26) 
i = l  

giving IILs = l ss = 2 TLL. 

In a kinetically balanced basis solutions of the matrix equations 

H V ( e ) a = e a  on • (27) 

are known not to be bounded from below by the lowest exact eigenvalue [4, 5]. 
However, again assuming completeness in the limit N ~ co and that Eq. (25b) is 
satisfied, there will be exactly 2N solutions on D and convergence to exact 
eigenvalues will be obtained as N ~ oo. Consequently, non-linear optimization is 
again applicable without introducing variational instability [5] (the hessian is 
positive definite at the linear variational minimum). 
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Spurious solutions are only obtained when Eqs. (25a, b) are not satisfied and 
such basis sets should not be considered to give valid representations of the Dirac 
hamiltonian. For the matrix representation of/.~approx Eq. (25b) takes the form 

c2 a+IILs( Vss)--llIsLa < a + VLLa (Va). (28) 

Clearly finite basis sets can be constructed for which this condition is not satisfied 
at finite c. In practice it turns out rather easy to satisfy Eqs. (25a, b). 

In Table 1 we provide numerical evidence for our conclusions. Three ( N =  
8, 10, 11) kinetically balanced gaussian basis sets have been chosen that are 
optimal for d states of the Schr6dinger hamiltonian, and are used to describe 
the d3/2 state of the Dirac hamiltonian (Z = 92, c = 137.036). This example shows 
that the calculated eigenvalue descends below the exact value ("variational 
collapse") and appears to oscillate about the exact value in the sequence N = 
8, 10, 11. The mechanism of variational collapse is illustrated in Table 1, namely 
that Eq. (19) is not satisfied for 1~ and liE1 in the range e = - ( 1 / 5 ) c  2 to 
e = + ( 1 / 5 ) c  2. This is not entirely surprising since /_.~approx is basis set dependent 
and Cauchy's interlace theorem is not applicable. Variational collapse can be 

Table 1. Results of calculations on the d3/2 state of a 1-electron atom, Z = 92, c = 137.036, in three 
kinetically balanced gaussian basis sets 

N =  8 N =  10 N =  11 

Exponents 9647 .88168234  41858 .18993339  42428 .18831725  

2925 .86162894  10638.92776925 11819.24997629 

1147.80947124 3796.87408079 4428 .74445776  

514.39457393 1600.45488903 1918.23176668 

250.77150155 747 .61208535 911 .09792779 

129.37730581 374 86799708 462.73537583 

69.06409971 197.89938168 247.52326018 

36.80479377 108.41044671 137.92038053 

60 .66591342 79 .23602099 

33.60811991 46 .29623207 

26 .68139018 

SchrSdinger equation 
calculated - 4 7 0 . 2 2 2 1 4 0  - 4 7 0 . 2 2 2 2 1 5  - 4 7 0 . 2 2 2 2 2 0  

exact - 4 7 0 . 2 2 2 2 2 2  

Lowest eigenvalue H P ( e )  

e = - 2 c  2 6268.27213 5920.54092 5205.80222 

e = - ( ~ ) c  2 - 3 9 6 . 3 7 9 6 2  - 3 9 6 . 3 8 7 6 5  - 3 9 6 . 3 9 1 1 1  

e = - ( ~ )  c z - 4 4 5 . 9 3 8 5 9  - 4 4 5 . 9 4 0 0 3  - 4 4 5 . 9 3 9 9 9  
e = 0 - 4 9 5 . 4 8 6 6 3  - 4 9 5 . 4 8 8 8 4  - 4 9 5 . 4 8 8 7 9  

e = +(1)cZ  - 5 4 5 . 0 3 3 8 5  - 5 4 5 . 0 3 7 6 0  - 5 4 5 . 0 3 7 5 8  

e = +(~)c  2 - 5 9 4 . 5 8 0 3 1  - 5 9 4 . 5 8 6 3 3  - 5 9 4 . 5 8 6 3 5  

e = + 2 c  2 - 9 9 0 . 8 7 0 1 5  - 9 9 0 . 9 7 2 4 2  - 9 9 0 . 9 7 3 5 7  

Solutions H e ( e ) a  = ea 
calculated - 4 8 9 . 0 3 5 0 9  - 4 8 9 . 0 3 7 1 3  - 4 8 9 . 0 3 7 0 7  

exact - 4 8 9 . 0 3 7 0 8  
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clearly identified with the implicit use of a matrix approximation to the exact 
partitioned hamiltonian operator (incomplete small component) and not, for 
example, with failure to satisfy the proper cusp condition or other basis set 
deficiencies. This does not, of course, exclude the possibility that basis set 
sequences (including gaussian sets) can be found that converge from above. 

We have chosen the d3/2 state as example since this state behaves regularly at 
the origin and therefore variational collapse is not restricted to the Sl/2 and 131/2 
states that have singularities at the origin. 

The analysis that we have presented for a 1-electron system is easily but less 
rigorously extendable to many electron systems where orbitals are determined 
by a (pseudo-l-electron) Fock-like hamiltonian. In these cases the matrix par- 
titioning technique again leads to conditions (analogous to the conditions Eqs. 
(25a, b)) that should be satisfied to guarantee separation of positive and negative 
energy orbitals. We expect the kinetic balance criterium to be sufficient. Electronic 
configurations are then easily constructed as anti-symmetric products of positive 
energy orbitals and the total energy is prevented from collapsing into the negative 
energy sea. 
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